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Abstract
Probabilistically reversible quantum measurements are considered from the
information-theoretical point of view. It is found that an upper bound on the
probability of a reversing quantum measurement is given by the generalized
Bhattacharyya overlap of conditional probabilities of the measurement
outcomes. The relation between the upper bound of the probability and the
information obtained by the quantum measurement is also discussed.

PACS numbers: 03.65.Ta, 02.50.Cw, 03.67.−a

1. Introduction

Quantum measurement inevitably changes a quantum state of a measured physical system.
A reversible quantum measurement is one in which by applying an appropriate quantum
measurement, a measured physical system can recover its initial quantum state before the
first quantum measurement was performed [1–6]. Reversible quantum measurement can
be classified into three types. One is the completely reversible measurement in which the
initial quantum state of the measured system can be deterministically recovered by applying
an appropriate quantum measurement [1, 2]. Another is the probabilistically reversible
measurement in which the physical system after the measurement can be restored to the
initial quantum state with finite probability [3–5] and the last is the logically reversible
measurement [6], where the initial quantum state can be calculated from the post-measurement
state and the measurement outcome. If the logically reversible measurement is physically
realizable, it is equivalent to the probabilistically reversible measurement. The characteristic
of the completely reversible measurement is that we cannot obtain any information about
the measured physical system. It has been shown that quantum teleportation [7] is
the completely reversible measurement [1]. The information-theoretical properties of the
completely reversible measurement have been investigated in detail [2]. The physical
and operator-algebraic properties of the probabilistically reversible measurement have been
studied [3–6], while the information-theoretical properties are not so clear. The information-
theoretical approach to quantum measurement [8–10] is very important in relation to the recent
development of the quantum information theory [11].
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Therefore this paper investigates the information-theoretical properties of the
probabilistically reversible measurement. It is shown that the upper bound on the probability
of recovering the initial quantum state of the system before the first measurement is given
by the generalized Bhattacharyya overlap of the conditional probabilities of the measurement
outcomes, where the Bhattacharyya overlap of probabilities is the distinguishability measure
of probabilities. Furthermore the relation between the upper bound on the probability of
recovering the initial quantum state and the information obtained by the quantum measurement
is also discussed. In section 2, the information-theoretical approach to quantum measurement is
briefly reviewed. In section 3, the upper bound on the probability of the reversing measurement
is obtained and the relation between the upper bound and the information gain is discussed.
In section 4, to illustrate the result, the reversibility of the spin- 1

2 measurement proposed by
Royer [3, 4] is considered. In section 5, a summary is given.

2. Information-theoretical approach to quantum measurement

In this section, we briefly review a quantum measurement process from the information-
theoretical point of view [8–10]. Suppose that we measure a value of some intrinsic observable
X̂, having a discrete spectrum, of a physical system, where we denote the projection-valued
measure (or the spectral measure) of this observable, corresponding to the eigenvalue x, as
X̂ (x) = |ψ(x)〉〈ψ(x)| and the spectral set as �X. Then the spectral decomposition of the
observable X̂ is given by X̂ = ∑

x∈�X
xX̂ (x). Furthermore we denote the Hilbert space

spanned by {|ψ(x)〉 | x ∈ �X} as H.
To perform the quantum measurement, we first prepare a measurement apparatus and then

we make an interaction between the physical system to be measured and the measurement
apparatus to create some quantum correlation between them, where the unitary operator
which describes the state change of the system–apparatus compound system is denoted as
Û . The readout process of the result y exhibited by the measurement apparatus is described
by a projection operator Ŷa(y) = |φa(y)〉〈φa(y)|, satisfying the relations Ŷa(y) � 0 and∑

y∈�Y
Ŷa(y) = 1̂a , where �Y is the set of all possible measurement outcomes and 1̂a is an

identity operator defined on the Hilbert space of the measurement apparatus. If the quantum
state of the relevant system before the interaction with the measurement apparatus is given
by ρ̂in and the measurement apparatus is prepared in a quantum state |0a〉, the quantum state
of the compound system just before the readout of the measurement outcome is given by
Ŵout = Û (ρ̂in ⊗ |0a〉〈0a|)Û †. Then the probability PA

out(y) of obtaining the measurement
outcome y is given by

Pout(y) = TrS[Â†(y)Â(y)ρ̂in] (1)

where the operator Â(y) of the system depends on the system–apparatus interaction, the initial
state of the apparatus and the readout process of the measurement

Â(y) = 〈φa(y)|Û |0a〉 (2)

which satisfies the normalization condition∑
y∈�Y

Â†(y)Â(y) = 1̂. (3)

The identity operator 1̂ is defined on the Hilbert space H. The quantum state ρ̂out(y) of the
physical system after obtaining the measurement outcome y is given by the state-reduction
formulae [12–14]

ρ̂out(y) = Â(y)ρ̂inÂ
†(y)

Tr [Â†(y)Â(y)ρ̂in]
. (4)
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The set of operators {Â(y) | y ∈ �Y } completely characterizes the quantum measurement
process. Since we can always exclude the values y that can never be obtained by the quantum
measurement, in the rest of this paper we assume that Pout(y) �= 0 for all y ∈ �Y .

In the previous papers [8–10], we have investigated the information-theoretical properties
of quantum measurement processes and we have obtained the necessary and sufficient condition
that the amount of information about the intrinsic observable X̂, obtained from the measurement
outcome, can be represented by the Shannon mutual information. The condition is that
the intrinsic observable X̂ (x) (or X̂) of the physical system commutes with the operational
observable given by Â†(y)Â(y), i.e.

[X̂ S(x), Â†(y)Â(y)] = 0 (∀ x ∈ �X ∀ y ∈ �Y ). (5)

It is found that this condition is satisfied by many kinds of quantum measurements such as the
photon counting process, the standard position (momentum) measurement and the quantum
nondemolition measurement [8,9]. If the condition (5) is satisfied, the amount of information
about the intrinsic observable of the physical system obtained by the quantum measurement is
given by

I (Y :X) =
∑
x∈�X

∑
y∈�Y

P (y|x)Pin(x) log

[
P(y|x)
Pout(y)

]
(6)

where Pin(x) = 〈ψ(x)|ρ̂in|ψ(x)〉 is the probability that the intrinsic observable X̂ takes a value
x in the initial quantum state ρ̂in of the system and the conditional probability P(y|x) that the
measurement outcome y is obtained when the intrinsic observable takes a value x is given by

P(y|x) = 〈ψ(x)|Â†(y)Â(y)|ψ(x)〉 (7)

which connects the initial probability Pin(x) with the output probability Pout(y)

Pout(y) =
∑
x∈�X

P (y|x)Pin(x). (8)

Furthermore, from equations (5) and (7) we obtain the relation between the intrinsic and
operational observables:

Â†(y)Â(y) =
∑
x∈�X

P (y|x)X̂ (x). (9)

The Shannon mutual information I (Y :X) given by equation (6) represents how much classical
information about the intrinsic observable X̂ S(x) is transmitted from the physical system
before performing the quantum measurement to the observer who performed the quantum
measurement. The mutual information satisfies the inequality 0 � I (Y :X) � H(X), where
H(X) is the Shannon entropy of the intrinsic observable in the initial quantum state ρ̂in of the
physical system, that is, H(X) = −∑x∈�X

Pin(x) logPin(x).

Suppose that the intrinsic observable X̂ (x) of the physical system commutes with
the unitary operator Û which describes the state change caused by the system–apparatus
interaction. For example, such a condition is satisfied by any quantum nondemolition
measurement. In this case, we obtain [X̂ (x), Â(y)] = 0 from equation (2). Combined with
equation (9), this commutativity yields

Â(y) =
∑
x∈�X

√
P(y|x)X̂ (x) (10)

where X̂ (x)X̂ (x ′) = δxx ′X̂ (x) has been used and an unimportant phase factor has been
ignored. On the other hand, when the Hilbert space H is a finite-dimensional space, the
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polar decomposition theorem for operators says that there is a unitary operator V̂ (y) such that

Â(y) = V̂ (y)

√
Â†(y)Â(y). Thus from equation (9) we have the relation

Â(y) = V̂ (y)
∑
x∈�X

√
P(y|x)X̂ (x). (11)

In this case, the measurement process can be divided into two processes [15]. One is called the

raw measurement, which is described by the set of non-negative operators
{√

Â†(y)Â(y) | y ∈
�Y

}
. The other is called the feedback process, which is described by the unitary operator V̂ (y)

depending on the measurement outcome y. The quantum measurement without the feedback
process plays an important role in the quantum information processing [15].

When the quantum measurement is described by the operator Â(y) without the feedback
process, the post-measurement state ρ̂out(y) of the physical system after obtaining the
measurement outcome y becomes

ρ̂out(y) =
∑

x∈�X

∑
x ′∈�X

√
P(y|x)P (y|x ′)X̂ (x)ρ̂inX̂ (x ′)∑

x∈�X
P (y|x)Pin(x)

(12)

with the probability Pout(y) = ∑
x∈� P (y|x)Pin(x). In this state, the observable X̂ takes

the value x with the probability P(x|y) = Tr [X̂ (x)ρ̂out(y)]. Then the average value of the
Shannon entropy of the post-measurement state ρ̂out(y) is calculated to be

H(X|Y ) = −
∑
y∈�Y

∑
x∈�X

Pout(y)P (x|y) logP(x|y)

= −
∑
y∈�Y

∑
x∈�X

P (y|x)Pin(x) log

[
P(y|x)Pin(x)

Pout(y)

]

= I (Y :X) + H(X) (13)

where I (Y :X) is the amount of information about the observable X̂ obtained by the quantum
measurement and H(X) is the Shannon entropy of the initial quantum state of the system.
Therefore it is easy to see that the average decrease of the Shannon entropy of the system,
�H(Y : X) ≡ H(X) − H(X|Y ), is equal to the information gain I (Y : X) by the quantum
measurement, that is,

�H(Y :X) = I (Y :X). (14)

This result indicates that the quantum measurement described by the operator Â(y) given by
equation (10) conserves the information on the observable X̂. Furthermore, when no
information is obtained by the quantum measurement, namely, I (Y :X) = 0, the conditional
probability P(y|x) is independent of x. Then it is easy to see from equation (12) that the
post-measurement state ρ̂out(y) becomes equal to the initial state ρ̂in of the system, where the
relation

∑
x∈�X

X̂ (x) = 1̂ is used. This result is closely related to quantum teleportation [1].

3. Probability of the reversing measurement

In this section, we consider the reversibility of quantum measurements that a measured physical
system can be restored to the initial state with finite probability. Such a reversing process is
performed by an appropriate quantum measurement followed by a unitary transformation.
Suppose that an operator R̂y describes the reversing measurement after the measurement
outcome y was obtained in the first measurement. The condition that the quantum measurement
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described by the operator R̂y restores the post-measurement state ρ̂out(y) to the initial state ρ̂in

of the system is given by

R̂yÂ(y) = myÛy (15)

where Ûy is a unitary operator and my is some non-zero c number, both of which depend on
the measurement outcome y. Then we have

Û †
y

(
R̂yρ̂out(y)R̂

†
y

Tr [R̂†
yR̂yρ̂out(y)]

)
Û †

y = ρ̂in. (16)

Here it is important to note that the unitarity of the operator Ûy requires Â(y)|ψ〉 �= 0
(∀|ψ〉 ∈ H). Since the state change ρ̂out(y) → ρ̂in occurs with probability Tr [R̂†

yR̂yρ̂out(y)],
the average probability P̄ of the reversing quantum measurement is given by

P̄ =
∑
y∈�Y

Pout(y)Tr [R̂†
yR̂yρ̂out(y)]

=
∑
y∈�Y

m2
y (17)

where Pout(y) is given by equation (1). The condition that the reversing process can be
physically realized is R̂†

yR̂y � 1̂.
We now obtain the upper bound on the probability P̄ of the reversing measurement. The

physical realizability condition of the reversing measurement, R̂†
yR̂y � 1̂, yields

〈φ|Â†(y)Â(y)|φ〉 � 〈φ|Â†(y)R̂†
yR̂yÂ(y)|φ〉

= m2
y〈φ|φ〉 (18)

for any vector |φ〉 ∈ H, where equation (15) has been used. Hence the parameter my satisfies
the inequality

m2
y � inf

|φ〉∈H
〈φ|Â†(y)Â(y)|φ〉

〈φ|φ〉 . (19)

Then we obtain from equation (9)

m2
y � inf

|φ〉∈H

∑
x∈�Y

P (y|x) 〈φ|X̂ (x)|φ〉
〈φ|φ〉

= inf
|φ〉∈H

∑
x∈�Y

P (y|x) |〈ψ(x)|φ〉|2
〈φ|φ〉

= min
x∈�X

P (y|x). (20)

Thus the average probability P̄ of the reversing quantum measurement satisfies the inequality

P̄ �
∑
y∈�Y

[
min
x∈�X

P (y|x)]. (21)

If the spectral set �X of the intrinsic observable is a finite set, we obtain

P̄ �
∑
�Y

[∏
x∈�X

P (y|x)
]1/|�X |

≡ B|�X |(Y :X) (22)

where we have used the inequality min1�j�n aj � (a1a2 · · · an)1/n (aj � 0 for all j ) and |�X|
is the number of the elements of the spectral set �X.
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The parameter B|�X |(Y : X) satisfies the following properties. If the equality P(y|x) =
P(y|x ′) holds for all x, x ′ ∈ �X, we have B|�X |(Y :X) = 1. On the other hand, the parameter
B|�X |(Y : X) vanishes if and only if for each y ∈ �Y there exists x ∈ �X, depending on y,
such that P(y|x) = 0. Furthermore, using the fact that the geometric mean is not greater than
the arithmetic mean, namely (a1a2 · · · an)1/n � (1/n)(a1 + a2 + · · · + an) (aj � 0), and using
the normalization condition of the conditional probability

∑
y∈�Y

P (y|x) = 1, we obtain the
inequality

0 � B|�X |(Y :X) � 1. (23)

When the observable X̂ is defined on a two-dimensional Hilbert space, we have |�X| = 2
and we can set �X = {0, 1}. In this case, the upper bound on the probability of the reversing
quantum measurement becomes

B2(Y :X) =
∑
y∈�Y

√
P(y|0)P (y|1). (24)

This is the Bhattacharyya overlap of the conditional probabilities P(y|0) and P(y|1), which is
the distinguishability measure of these probabilities [16]. As the conditional probabilities
P(y|x) and P(y|x ′) (x �= x ′) is more distinguishable, the upper bound B|�X |(Y : X) is
smaller and the information gain I (Y : X) is greater. In the most distinguishable case,
where P(y|x) = δxy , we have B|�X |(Y : X) = 0 and I (Y : X) = log |�X|, while in the
least distinguishable case, where P(y|x) is independent of x, we have B|�X |(Y :X) = 1 and
I (Y : X) = 0. The former means that when we obtain the maximum information about the
intrinsic observable, the initial quantum state of the system cannot be recovered, and the latter
corresponds to the completely reversible measurement [1,2]. In the following, we refer to the
parameter B|�X |(Y :X) as the generalized Bhattacharyya overlap. Therefore the upper bound
on the average probability of the reversing quantum measurement is given by the generalized
Bhattacharyya overlap of the conditional probabilities of the measurement outcomes.

4. Reversibility of the spin- 1
2 measurement

To illustrate the result obtained in the previous section, we consider the probabilistically re-
versible spin- 1

2 measurement investigated by Royer [3]. In this measurement, the unitary opera-

tor Û which describes the state change due to the system–apparatus interaction is given by Û =
exp(−iσ Ŝz⊗Ŝa

y ) [17], where the operator Ŝz is a z component of spin- 1
2 of the system, the oper-

ator Ŝa
y is a y component of spin- 1

2 of the apparatus, and σ is some real parameter. The measure-
ment apparatus before the interaction with the system is prepared in a superposition state |0a〉 =
cos( 1

2θ)|↑a〉 + sin( 1
2θ)|↓a〉, where Ŝa

z |↑a〉 = 1
2 |↑a〉 and Ŝa

z |↓a〉 = − 1
2 |↓a〉. The readout of the

measurement result is the Stern–Gerlach measurement of the z component of the spin- 1
2 particle

of the measurement apparatus. Then the measurement operators Â(0) and Â(1) are given by

Â(0) = cos( 1
2θ + 1

4σ)X̂ (0) + cos( 1
2θ − 1

4σ)X̂ (1) (25)

Â(1) = sin( 1
2θ + 1

4σ)X̂ (0) + sin( 1
2θ − 1

4σ)X̂ (1) (26)

where X̂ (0) = |↑〉〈↑| and X̂ (1) = |↓〉〈↓| with Ŝz|↑〉 = 1
2 |↑〉 and Ŝz|↓〉 = − 1

2 |↓〉. The
conditional probability P(j |k) of the measurement, given by (7), is expressed as a 2×2 matrix

P =
(

cos2( 1
2θ + 1

4σ) cos2( 1
2θ − 1

4σ)

sin2( 1
2θ + 1

4σ) sin2( 1
2θ − 1

4σ)

)
. (27)

The upper bound B2(Y : X) on the average probability P̄ of the reversing measurement is
easily obtained:

B2(Y :X) = | cos( 1
2θ + 1

4σ) cos( 1
2θ − 1

4σ)| + | sin( 1
2θ + 1

4σ) sin( 1
2θ − 1

4σ)|. (28)
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Figure 1. The plots of (a) the information gain I (p, q) and (b) the upper bound B(q, p), where
the information is measured in bits and a = 1

2 is assumed.

(This figure is in colour only in the electronic version)

In particular, if the parameters θ and σ are chosen such that cos( 1
2θ ± 1

4σ) � 0 (� 0) and
sin( 1

2θ ± 1
4σ) � 0 (� 0), the upper bound is simplified as B2(Y :X) = cos2( 1

2σ).
To investigate the relation between the upper bound B2(Y :X) on the average probability

of the reversing quantum measurement and the information gain I (Y :X) by performing the
quantum measurement, we setP(0|0) = 1−P(1|0) = 1−p andP(1|1) = 1−P(0|1) = 1−q

with 0 � p � 1 and 0 � q � 1. In this case, the upper bound B(p, q) becomes

B(p, q) =
√
(1 − p)q +

√
p(1 − q) (29)

and the information I (p, q) obtained by the quantum measurement is given by

I (p, q) = (1 − p)(1 − a) log

[
1 − p

(1 − p)(1 − a) + qa

]

+ qa log

[
q

(1 − p)(1 − a) + qa

]

+p(1 − a) log

[
p

p(1 − a) + (1 − q)a

]

+(1 − q)a log

[
1 − q

p(1 − a) + (1 − q)a

]
(30)

where we set 〈↑ |ρ̂in|↑〉 = 1 − 〈↓|ρ̂in|↓〉 = 1 − a with 0 � a � 1. The upper bound B(p, q)

and the information gain I (p, q) are plotted in figure 1.
This figure clearly shows that, as the information gain in the quantum measurement is

greater, the possibility that we can recover the initial quantum state of the system becomes
smaller.

5. Conclusion

In this paper, we have investigated the information-theoretical properties of the probabilistically
reversible measurement and we have found that the upper bound on the average probability of
the reversing measurement is given by the generalized Bhattacharyya overlap B|�X |(Y :X) of
the conditional probabilities of the measurement outcomes. Furthermore we have shown the
relation between the information obtained by the quantum measurement and the probability
of recovering the initial quantum state of the system.
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